结合上下文和注意力机制改进的视盘分割模型

青光眼为多发性眼底疾病,是致盲的主要原因之一。眼底图像来源广,质量参差不齐,且视盘区域具有多尺度性特征,融合上下文信息有利于准确分割多尺度视盘边界。以U-Net为基础,结合上下文信息和卷积注意力模块(CBEnasidenib核磁AM),提出了一种改进的视盘分割模型,包括:(1)使用实例-批处理归一化(IBN)模块与注意力机制改进主干网络ResNet34,提升分割模型的泛化性和图像通道特征的提取能力;(2)提出一种多层次上下文信息提取(MCE)模块处理主干网络输出的特征,融合上下文信息增强分割模型对视盘边缘特征的提取能力;(3)使MK-2206研究购买用Transformer机制替换U-Net中的跳跃连接和上采样,进一步提高视盘多尺度特征和图像通道特征的提取能力。将改进的分割模型与U-Net、U-Net++、DeeplabV3+、FGeography medicalCN和PSPNet分割模型进行视盘分割精度比较,结果表明提出的分割模型具有更好的分割效果,Dice、MIoU、MPA和FPS指标分别为98.18%、96.45%、98.11%和17.56 Img/s。该研究成果可为青光眼的早期诊断提供技术支撑。